Bioreactor Systems for Human Bone Tissue Engineering
نویسندگان
چکیده
Critical size skeletal defects resulting from trauma and pathological disorders still remain a major clinical problem worldwide. Bone engineering aims at generating unlimited amounts of viable tissue substitutes by interfacing osteocompetent cells of different origin and developmental stage with compliant biomaterial scaffolds, and culture the cell/scaffold constructs under proper culture conditions in bioreactor systems. Bioreactors help supporting efficient nutrition of cultured cells and allow the controlled provision of biochemical and biophysical stimuli required for functional regeneration and production of clinically relevant bone grafts. In this review, the authors report the advances in the development of bone tissue substitutes using human cells and bioreactor systems. Principal types of bioreactors are reviewed, including rotating wall vessels, spinner flasks, direct and indirect flow perfusion bioreactors, as well as compression systems. Specifically, the review deals with: (i) key elements of bioreactor design; (ii) range of values of stress imparted to cells and physiological relevance; (iii) maximal volume of engineered bone substitutes cultured in different bioreactors; and (iv) experimental outcomes and perspectives for future clinical translation.
منابع مشابه
Special Issue: Design of Bioreactor Systems for Tissue Engineering
Tissue engineering and, more broadly, regenerative medicine is moving into a phase where we are seeing potential therapies moving 'slowly but surely' from the laboratory into the clinic, i.e., from research to the clinic and into manufacturing. The numbers of cells required for cell therapy protocols can vary from tens of millions, to billions [1], and it is widely considered that such cell num...
متن کاملBioreactor systems for bone tissue engineering.
Bone graft material is often required for the treatment of osseous defects. However, due to limitations and risks associated with autologous as well as allogenic bone grafting procedures, alternative strategies are needed. In this context, ex vivo tissue engineering (TE) strategies for de novo generation of bone tissue include the combined use of autologous bone-forming cells and three-dimensio...
متن کاملBone tissue engineering bioreactors: dynamic culture and the influence of shear stress.
A bone tissue engineering strategy involving the in vitro expansion of cells on a scaffold before implantation into the body represents a promising alternative to current clinical treatments. To improve in vitro culture, bioreactor systems have been widely researched for bone tissue engineering purposes. Spinner flask, rotating wall bioreactors, and perfusion systems have all been the focus of ...
متن کاملOsteogenic Differentiation and Mineralization on Compact Multilayer nHA-PCL Electrospun Scaffolds in a Perfusion Bioreactor
Background: Monolayer electrospun scaffolds have already been used in bone tissue engineering due to their high surface-to-volume ratio, interconnectivity, similarity to natural bone extracellular matrix (ECM), and simple production. Objectives: The aim of this study was to evaluate the dynamic culture effect on osteogenic differentiation and mineralizationi into a compact cellular multilayer ...
متن کاملThe role of perfusion bioreactors in bone tissue engineering
Tissue engineering has emerged as a possible alternative to current treatments for bone injuries and defects. However, the common tissue engineering approach presents some obstacles to the development of functional tissues, such as insufficient nutrient and metabolite transport and non-homogenous cell distribution. Culture of bone cells in three-dimensional constructs in bioreactor systems is a...
متن کامل